Although most patients with type 1 diabetes (T1D) retain some functional insulin-producing islet β cells at the time of diagnosis, the rate of further β cell loss varies across individuals. It is not clear what drives this differential progression rate. CD8+ T cells have been implicated in the autoimmune destruction of β cells. Here, we addressed whether the phenotype and function of autoreactive CD8+ T cells influence disease progression. We identified islet-specific CD8+ T cells using high-content, single-cell mass cytometry in combination with peptide-loaded MHC tetramer staining. We applied a new analytical method, DISCOV-R, to characterize these rare subsets. Autoreactive T cells were phenotypically heterogeneous, and their phenotype differed by rate of disease progression. Activated islet-specific CD8+ memory T cells were prevalent in subjects with T1D who experienced rapid loss of C-peptide; in contrast, slow disease progression was associated with an exhaustion-like profile, with expression of multiple inhibitory receptors, limited cytokine production, and reduced proliferative capacity. This relationship between properties of autoreactive CD8+ T cells and the rate of T1D disease progression after onset make these phenotypes attractive putative biomarkers of disease trajectory and treatment response and reveal potential targets for therapeutic intervention.
Alice E. Wiedeman, Virginia S. Muir, Mario G. Rosasco, Hannah A. DeBerg, Scott Presnell, Bertrand Haas, Matthew J. Dufort, Cate Speake, Carla J. Greenbaum, Elisavet Serti, Gerald T. Nepom, Gabriele Blahnik, Anna M. Kus, Eddie A. James, Peter S. Linsley, S. Alice Long
BACKGROUND Respiratory syncytial virus (RSV) is an important cause of acute pulmonary disease and one of the last remaining major infections of childhood for which there is no vaccine. CD4+ T cells play a key role in antiviral immunity, but they have been little studied in the human lung.METHODS Healthy adult volunteers were inoculated i.n. with RSV A Memphis 37. CD4+ T cells in blood and the lower airway were analyzed by flow cytometry and immunohistochemistry. Bronchial soluble mediators were measured using quantitative PCR and MesoScale Discovery. Epitope mapping was performed by IFN-γ ELISpot screening, confirmed by in vitro MHC binding.RESULTS Activated CD4+ T cell frequencies in bronchoalveolar lavage correlated strongly with local C-X-C motif chemokine 10 levels. Thirty-nine epitopes were identified, predominantly toward the 3′ end of the viral genome. Five novel MHC II tetramers were made using an immunodominant EFYQSTCSAVSKGYL (F-EFY) epitope restricted to HLA-DR4, -DR9, and -DR11 (combined allelic frequency: 15% in Europeans) and G-DDF restricted to HLA-DPA1*01:03/DPB1*02:01 and -DPA1*01:03/DPB1*04:01 (allelic frequency: 55%). Tetramer labeling revealed enrichment of resident memory CD4+ T (Trm) cells in the lower airway; these Trm cells displayed progressive differentiation, downregulation of costimulatory molecules, and elevated CXCR3 expression as infection evolved.CONCLUSIONS Human infection challenge provides a unique opportunity to study the breadth of specificity and dynamics of RSV-specific T-cell responses in the target organ, allowing the precise investigation of Trm recognizing novel viral antigens over time. The new tools that we describe enable precise tracking of RSV-specific CD4+ cells, potentially accelerating the development of effective vaccines.TRIAL REGISTRATION ClinicalTrials.gov NCT02755948.FUNDING Medical Research Council, Wellcome Trust, National Institute for Health Research.
Aleks Guvenel, Agnieszka Jozwik, Stephanie Ascough, Seng Kuong Ung, Suzanna Paterson, Mohini Kalyan, Zoe Gardener, Emma Bergstrom, Satwik Kar, Maximillian S. Habibi, Allan Paras, Jie Zhu, Mirae Park, Jaideep Dhariwal, Mark Almond, Ernie H.C. Wong, Annemarie Sykes, Jerico Del Rosario, Maria-Belen Trujillo-Torralbo, Patrick Mallia, John Sidney, Bjoern Peters, Onn Min Kon, Alessandro Sette, Sebastian L. Johnston, Peter J. Openshaw, Christopher Chiu
Alterations in gut microbiota impact the pathophysiology of several diseases, including cancer. Radiotherapy (RT), an established curative and palliative cancer treatment, exerts potent immune modulatory effects, inducing tumor-associated antigen (TAA) cross-priming with antitumor CD8+ T cell elicitation and abscopal effects. We tested whether the gut microbiota modulates antitumor immune response following RT distal to the gut. Vancomycin, an antibiotic that acts mainly on gram-positive bacteria and is restricted to the gut, potentiated the RT-induced antitumor immune response and tumor growth inhibition. This synergy was dependent on TAA cross presentation to cytolytic CD8+ T cells and on IFN-γ. Notably, butyrate, a metabolite produced by the vancomycin-depleted gut bacteria, abrogated the vancomycin effect. In conclusion, depletion of vancomycin-sensitive bacteria enhances the antitumor activity of RT, which has important clinical ramifications.
Mireia Uribe-Herranz, Stavros Rafail, Silvia Beghi, Luis Gil-de-Gómez, Ioannis Verginadis, Kyle Bittinger, Sergey Pustylnikov, Stefano Pierini, Renzo Perales-Linares, Ian A. Blair, Clementina A. Mesaros, Nathaniel W. Snyder, Frederic Bushman, Constantinos Koumenis, Andrea Facciabene
Omalizumab is an anti-IgE monoclonal antibody (mAb) approved for the treatment of severe asthma and chronic spontaneous urticaria. Use of Omalizumab is associated with reported side effects, ranging from local skin inflammation at the injection site to systemic anaphylaxis. To date, the mechanisms through which Omalizumab induces adverse reactions are still unknown. Here, we demonstrated that immune complexes formed between Omalizumab and IgE can induce both skin inflammation and anaphylaxis through engagement of IgG receptors (FcγRs) in FcγR-humanized mice. We further developed an Fc-engineered mutant version of Omalizumab, and demonstrated that this mAb is equally potent as Omalizumab at blocking IgE-mediated allergic reactions, but does not induce FcγR-dependent adverse reactions. Overall, our data indicate that Omalizumab can induce skin inflammation and anaphylaxis by engaging FcγRs, and demonstrate that Fc-engineered versions of the mAb could be used to reduce such adverse reactions.
Bianca Balbino, Pauline Herviou, Ophélie Godon, Julien Stackowicz, Odile Richard-Le Goff, Bruno Iannascoli, Delphine Sterlin, Sébastien Brûlé, Gael A. Millot, Faith M. Harris, Vera A. Voronina, Kari C. Nadeau, Lynn E. Macdonald, Andrew J. Murphy, Pierre Bruhns, Laurent L. Reber
High levels of ecto-5'-nucleotidase (CD73) have been implicated in immune suppression and tumor progression, and have also been observed in cancer patients who progress on anti-PD-1 immunotherapy. While regulatory T cells can express CD73 and inhibit T cell responses via the production of adenosine, less is known about CD73 expression in other immune cell populations. We found that tumor-infiltrating NK cells upregulate CD73 expression and the frequency of these CD73+ NK cells correlated with larger tumor size in breast cancer patients. In addition, the expression of multiple alternative immune checkpoint receptors including LAG-3, VISTA, PD-1, and PD-L1 was significantly higher in CD73 positive NK cells than in CD73 negative NK cells. Mechanistically, NK cells transport CD73 in intracellular vesicles to the cell surface and the extracellular space via actin polymerization-dependent exocytosis upon engagement of 4-1BBL on tumor cells. These CD73 positive NK cells undergo transcriptional reprogramming and upregulate IL10 production via STAT3 transcriptional activity, suppressing CD4 T cell proliferation and IFN-ɣ production. Taken together, our results support that tumors can hijack NK cells as a means to escape immunity and that CD73 expression defines an inducible population of NK cells with immune regulatory properties within the tumor microenvironment.
Shi Yong Neo, Ying Yang, Record Julien, Ran Ma, Xinsong Chen, Ziqing Chen, Nicholas P. Tobin, Emily Blake, Christina Seitz, Ron Thomas, Arnika Kathleen Wagner, John Andersson, Jana de Boniface, Jonas Bergh, Shannon Murray, Evren Alici, Richard Childs, Martin Johansson, Lisa S. Westerberg, Felix Haglund, Johan Hartman, Andreas Lundqvist
Unconventional T cells that recognize mycobacterial antigens are of great interest as potential vaccine targets against tuberculosis (TB). This includes donor-unrestricted T cells (DURTs), such as mucosa-associated invariant T cells (MAITs), CD1-restricted T cells, and γδ T cells. We exploited the distinctive nature of DURTs and γδ T cell receptors (TCRs) to investigate the involvement of these T cells during TB in the human lung by global TCR sequencing. Making use of surgical lung resections, we investigated the distribution, frequency, and characteristics of TCRs in lung tissue and matched blood from individuals infected with TB. Despite depletion of MAITs and certain CD1-restricted T cells from the blood, we found that the DURT repertoire was well preserved in the lungs, irrespective of disease status or HIV coinfection. The TCRδ repertoire, in contrast, was highly skewed in the lungs, where it was dominated by Vδ1 and distinguished by highly localized clonal expansions, consistent with the nonrecirculating lung-resident γδ T cell population. These data show that repertoire sequencing is a powerful tool for tracking T cell subsets during disease.
Paul Ogongo, Adrie J.C. Steyn, Farina Karim, Kaylesh J. Dullabh, Ismael Awala, Rajhmun Madansein, Alasdair Leslie, Samuel M. Behar
Activation of host T cells that mediate allograft rejection is a 2-step process. The first occurs in secondary lymphoid organs where T cells encounter alloantigens presented by host DCs and differentiate to effectors. Antigen presentation at these sites occurs principally via transfer of intact, donor MHC-peptide complexes from graft cells to host DCs (cross-dressing) or by uptake and processing of donor antigens into allopeptides bound to self-MHC molecules (indirect presentation). The second step takes place in the graft, where effector T cells reengage with host DCs before causing rejection. How host DCs present alloantigens to T cells in the graft is not known. Using mouse islet and kidney transplantation models, imaging cytometry, and 2-photon intravital microscopy, we demonstrate extensive cross-dressing of intragraft host DCs with donor MHC-peptide complexes that occurred early after transplantation, whereas host DCs presenting donor antigen via the indirect pathway were rare. Cross-dressed DCs stably engaged TCR-transgenic effector CD8+ T cells that recognized donor antigen and were sufficient for sustaining acute rejection. In the chronic kidney rejection model, cross-dressing declined over time, but was still conspicuous 8 weeks after transplantation. We conclude that cross-dressing of host DCs with donor MHC molecules is a major antigen presentation pathway driving effector T cell responses within allografts.
Andrew D. Hughes, Daqiang Zhao, Hehua Dai, Khodor I. Abou-Daya, Roger Tieu, Rayan Rammal, Amanda L. Williams, Douglas P. Landsittel, Warren D. Shlomchik, Adrian E. Morelli, Martin H. Oberbarnscheidt, Fadi G. Lakkis
Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of Mucopolysaccharidoses including Morquio A syndrome caused by GALNS deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS during ten days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete enzyme (GALNS) to orally induce tolerance to GALNS prior to ERT, resulted in several improvements to ERT in mice: i) decreased splenocyte proliferation after in-vitro GALNS stimulation; ii) modulation of cytokine secretion profile; iii) decline in GALNS-specific IgG or IgE plasma; iv) decreased GAG storage in liver; and v) fewer circulating immune-complexes in plasma. This model could be extrapolated to other lysosomal storage disorders where immune response hinders ERT.
Angela C. Sosa, Barbara Kariuki, Qi Gan, Alan P. Knutsen, Clifford J. Bellone, Miguel A. Guzmán, Luis A. Barrera, Shunji Tomatsu, Anil K. Chauhan, Eric Armbrecht, Adriana M. Montaño
Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage, however, their role in autoimmunity is less clear. Herein we demonstrate that two C-type lectin receptors (CLRs), Mcl and Mincle, play an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS). Congenic rats expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 revealed that receptors expression in the central nervous system is crucial for the T cell recruitment and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered MCL/MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE stimulation in peripheral blood mononuclear cells from MS patients. Together these data support a role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic target in MS.
Marie N'diaye, Susanna Brauner, Sevasti Flytzani, Lara Kular, Andreas Warnecke, Milena Z. Adzemovic, Eliane Piket, Jin-Hong Min, Will Edwards, Filia Mela, Hoi Ying Choi, Vera Magg, Tojo James, Magdalena Linden, Holger M. Reichardt, Michael R. Daws, Jack van Horssen, Ingrid Kockum, Robert A. Harris, Tomas Olsson, Andre O. Guerreiro-Cacais, Maja Jagodic
Cancer immune evasion is achieved through multiple layers of immune tolerance mechanisms including immune editing, recruitment of tolerogenic immune cells, and secretion of immune suppressive cytokines. Recent success with immune checkpoint inhibitors in cancer immunotherapy suggests a dysfunctional immune synapse as a pivotal tolerogenic mechanism. Tumor cells express immune synapse proteins to suppress the immune system, which is often modulated by epigenetic mechanisms. When the methylation status of key immune synapse genes was interrogated, we observed disproportionately hyper-methylated co-stimulatory genes and hypo-methylation of immune checkpoint genes, which were negatively associated with functional T-cell recruitment to the tumor microenvironment. Therefore, the methylation status of immune synapse genes reflects tumor immunogenicity and correlates with survival.
Anders Berglund, Matthew Mills, Ryan M. Putney, Imène Hamaidi, James Mulé, Sungjune Kim