Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Published December 2, 2019; First published September 5, 2019
Citation Information: J Clin Invest. 2019;129(12):5381-5399. https://doi.org/10.1172/JCI125336.
View: Text | PDF
Categories: Research Article Oncology

CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion

  • Text
  • PDF
Abstract

Oral squamous cell carcinoma (OSCC) frequently invades the maxillary or mandibular bone, and this bone invasion is closely associated with poor prognosis and survival. Here, we show that CCL28 functions as a negative regulator of OSCC bone invasion. CCL28 inhibited invasion and epithelial-mesenchymal transition (EMT), and its inhibition of EMT was characterized by induced E-cadherin expression and reduced nuclear localization of β-catenin in OSCC cells with detectable RUNX3 expression levels. CCL28 signaling via CCR10 increased retinoic acid receptor-β (RARβ) expression by reducing the interaction between RARα and HDAC1. In addition, CCL28 reduced RANKL production in OSCC and osteoblastic cells and blocked RANKL-induced osteoclastogenesis in osteoclast precursors. Intraperitoneally administered CCL28 inhibited tumor growth and osteolysis in mouse calvaria and tibia inoculated with OSCC cells. RARβ expression was also increased in tumor tissues. In patients with OSCC, low CCL28, CCR10, and RARβ expression levels were highly correlated with bone invasion. Patients with OSCC who had higher expression of CCL28, CCR10, or RARβ had significantly better overall survival. These findings suggest that CCL28, CCR10, and RARβ are useful markers for the prediction and treatment of OSCC bone invasion. Furthermore, CCL28 upregulation in OSCC cells or CCL28 treatment can be a therapeutic strategy for OSCC bone invasion.

Authors

Junhee Park, Xianglan Zhang, Sun Kyoung Lee, Na-Young Song, Seung Hwa Son, Ki Rim Kim, Jae Hoon Shim, Kwang-Kyun Park, Won-Yoon Chung

×

Figure 8

Expression levels of CCL28, CCR10, or RARβ are closely associated with overall survival in 117 patients with OSCC.

Options: View larger image (or click on image) Download as PowerPoint
Expression levels of CCL28, CCR10, or RARβ are closely associated with o...
(A) Representative images of IHC staining of CCL28, CCR3, CCR10, and RARβ in normal oral mucosa and OSCC tissues. Scale bars: 100 μm. Magnified images of the boxed area are shown in the insets. Scale bars: 20 μm. (B) Frequency of histoscores in normal oral mucosa and OSCC tissues. (C) Kaplan-Meier survival curve of patients with OSCC stratified based on CCL28, CCR3, CCR10, or RARβ expression by the log-rank test.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts